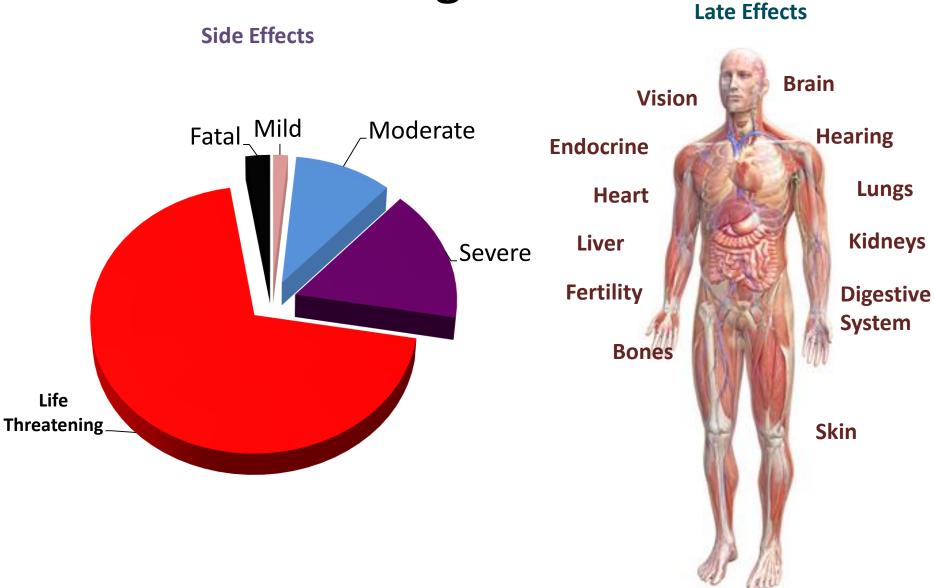

Lessons Learned from Failed Pediatric Trials:

Failed Trials and Design Considerations in Pediatric Oncology

March 12, 2016


Brenda J. Weigel, M.Sc., M.D. Pediatric Hematology/Oncology Department of Pediatrics and University of Minnesota Masonic Cancer Center Chair Phase 1 and Pilot Consortium, Children's Oncology Group

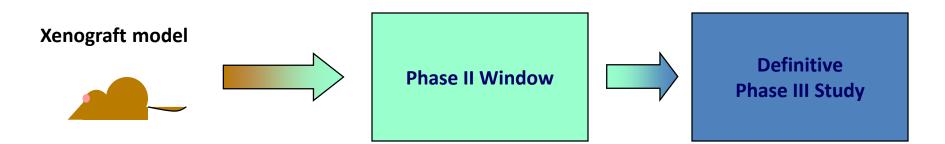
Treatment year

SEER: Adamson

Curing Cancer

Ultimate Challenges in Pediatric Oncology

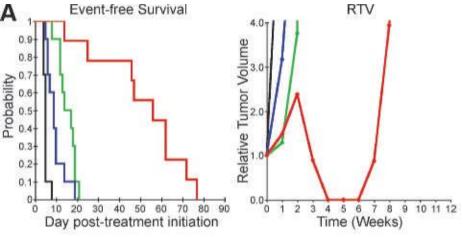
- Improve cure rates
- Decrease acute toxicity
- Minimize risks for late effects

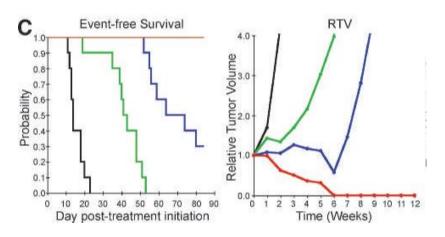

Strategies to Prioritize Drugs For Pediatric Development

- Biology: Molecular target identification, drug mechanism of action, micro-environment vs tumor effects
- Drug availability and formulation
- Pre-clinical data: Cell lines, validated in vivo models
- Clinical data: Relevant adult trials

Pre-clinical Data

- Cell lines
 - Readily available for most pediatric cancers
 - Can investigate and understand targets, large screens quickly and relatively inexpensive
 - No understanding of host factors, dose exposure considerations may not reflect in vivo, genetic drift
- Animal Models
 - Issues of immunodeficient mice if using xenografts/PDX
 - Orthotopic vs alternative site: microenvironment issues
 - Dose/schedule/toxicity: labor and resource intense
 - Genetically engineered models may not truly reflect genetic complexity of childhood cancer


New Drug Development in RMS Xenograft to Phase III Clinical Trials

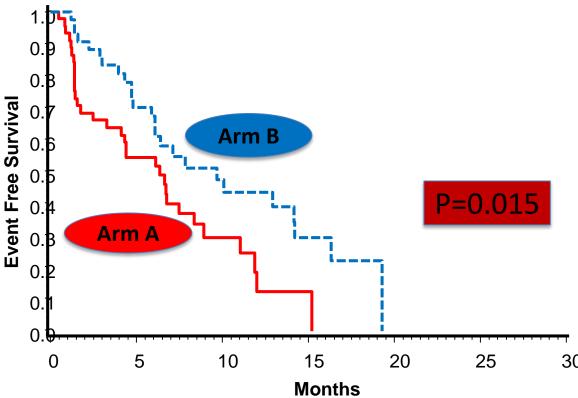

Melphalan	+ vincristine	Active	Too toxic
Ifosfamide	+ etoposide	Active	IRS IV
	+ doxorubicin	Active	
Topotecan	Single agent (IRS V)	Active	No activity in relapse
Cancer Chemother Pharmacol. 1995;36(5):393- 403	+ cyclophos (D9501)	Active	Intermediate-Risk (D9803) No improvement in FFS

J Clin Oncol 2001;19:213- J Clin Oncol 2004;22:1398-403 J Clin Oncol 2006;24:3415-22 J Clin Oncol 2009;27:5182-8

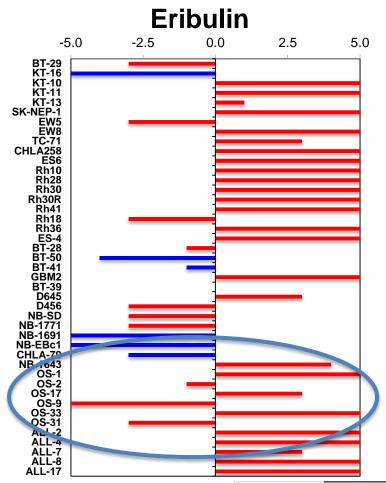
mTOR Inhibitor, VEGFR Inhibition and Chemotherapy in Rhabdomyosarcoma

RAPAMYCIN + VINCRISTINE

RAPAMYCIN + CYCLOPHOSPHAMIDE

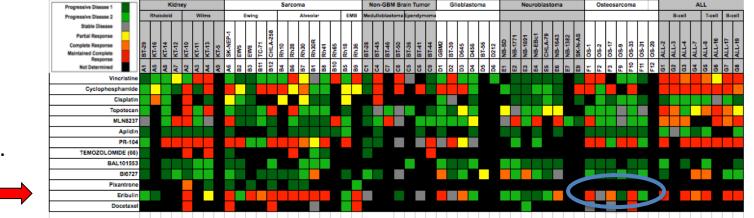

Mol Cancer Ther 2011 Pediatric Preclinical Testing Program

- Vinorelbine and cyclophosphamide are active in relaspsed Rhabdomyosarcoma Casanova M, Cancer 2002: Kuttesch JF, PBC 2009: Casanova M, Cancer 2004
- Complete inhibition of RMS xenograft growth and neovascularization with VEGF blockade
- Pediatric Phase 1 trial of bevacizumab completed with no DLT
- Increased mTOR pathway activation in RMS associated with decreased survival PPTP demonstrated activity of Rapamycin in RMS
- Temsirolimus tested in Pediatric Phase 1 trial


Gerber HP, Can Res, 2000; Glade Bender JL, JCO 2008; Petricoin EF, Can Res 2007; Houghton PJ PBC 2008; Spunt SL JCO 2011;

Randomized Phase 2 Trial: Bevacizumab and Temsirolimus in combination with Vinorelbine (V) and Cyclophosphamide (C) for First Relapse/Disease Progression of Rhabdomyosarcoma (RMS) COG: Mascarenhas

- Randomized selection design: early end point of 6 month EFS
- 6 month EFS: Regimen A 54% (95% CI 38%, 65%), Regimen B 67% (95% CI 50%, 79%)
- 1 year EFS: Regimen A 12% (95% CI 3%, 30%), Regimen B 43% (95% CI 26%, 59%)
- Temsirolimus has been selected by COG for further investigation in newly diagnosed intermediate RMS patients randomized with VAC/VI backbone



Still to come biological correlates of response

Eribulin and Osteosarcoma

- FDA approved as a single agent for metastatic breast cancer
- Phase 2 activity in adults with soft tissue sarcomas
 Lancet Oncol. 2011 Oct;12(11):1045-52
- Moved to a phase 2 study in osteosarcoma at RP2D based on preclinical data
- 0/19 patients had response
- ?? What predicated response in preclinical model
- ?? How strong a pre-clinical signal do you need
- ?? What about combination strategies

Pediatr Blood Cancer. 2013 Aug;60(8):1325-32.

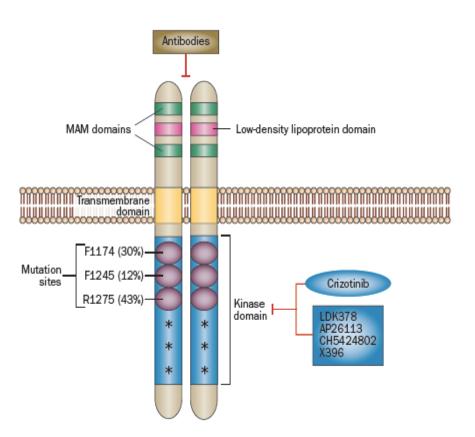
Parp Inhibition and Ewing Sarcoma

- Drug screen demonstrated highly significant association between *EWS-FLI1* rearrangement and sensitivity to the PARP1 inhibitor olaparib
- Ewing sarcoma cell line assays confirmed sensitivity discovered in drug screen Cancer Res 2012:72:1608-1613, Nature 2012:483(7391):570-575
- Fold Potentiation of TMZ (orange bars) and topotecan (green bars) Phase 2 study single 90 • by BMN 673 (5 nM) agent failed in 80 adults with Ewing **EOLD POTENTIATION** 40 30 50 50 BMC Cancer. 2014 Nov 5;14:813 60 Parp inhibition . sensitizes to DNA damage prevents repair 10 Pediatr Blood Cancer 2014;61:145-50 0 Cell Rep 2014;9(3):829-41 NALM-6 CHLA-9 Rh18 Rh30 BT-12 TC-71 RD Rh41 CHLA-266 CHLA-10 HLA-258 NB-EBc1 CHLA-90 CHLA-136 RS4;11 SJ-GBM2 NB-1643 Karpas-299 MOLT-4 COG-LL-317 **CCRF-CEM** Kasumi-1 Ramos-RA1 Pediatr Blood Cancer 2015;62:91-8 Mol Cancer Ther 2015;14:2818-30

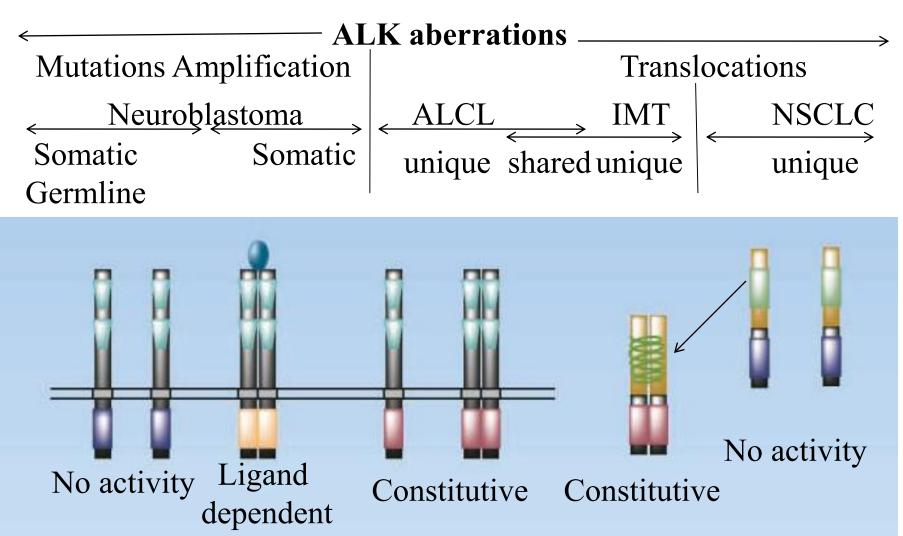
Novel Phase 1/2 Study ADVL1411: Talazoparib with Temozolomide

Part A: dose finding with required PK Of both Talazoparib and Temozolomide

Part B: Ewing Sarcoma phase 2 Simon 2 stage design Tissue and biomarker evaluation (PARP-1 and DNA repair markers)

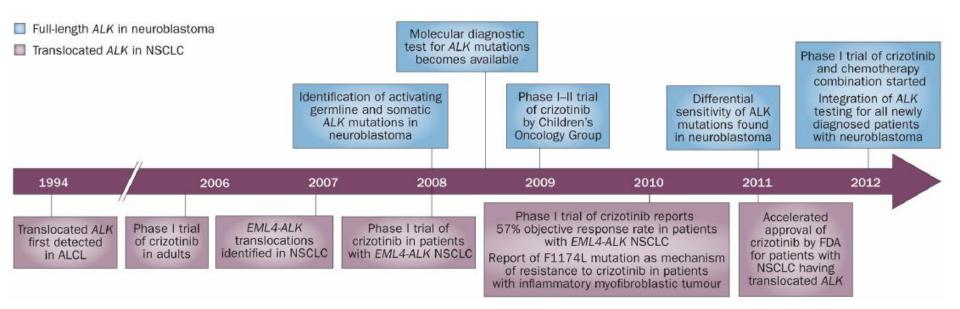

Unique elements:

- No single agent data for parp inhibitor in children needed as agent will be synergistic
- First study to have this design in children

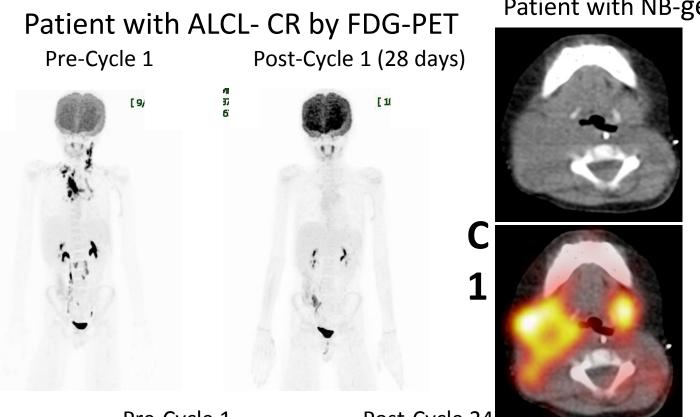

Dose Level	BMN	Temozolomide	
	(mcg/m²/dose)	Max. Daily Dose (mcg/Day)	(mg/m²/dose)
-1	400#	800	15
1*	400#	800	20
2	400 ^{&}	800	20
3	600 ^{&}	1000	20
4	600 ^{&}	1000	30
5	600 ^{&}	1000	40
6	600 ^{&}	1000	55

Anaplastic Lymphoma Kinase Gene

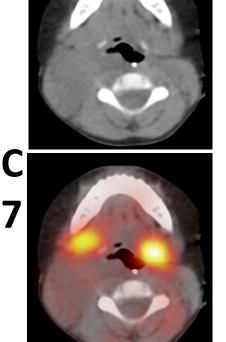
- Originally identified in ALCL as a fusion transcript t(2;5) (Morris S et al., Science, 1994)
- Inflammatory Myofibroblastic Tumors (IMT)- 30-50%
- Non-small cell lung cancer (NSCLC)- 3-5%
- Neuroblastomamutations/amplification in 14% of HR group
- Others
 - Renal Cell Ca
 - Anaplastic Thyroid Ca
 - Rhabdomyosarcoma
 - Resistance mechanism to ALKi Rx



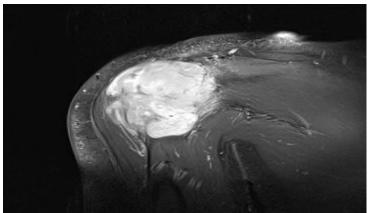
ALK-1 Genetic Alterations in Cancer

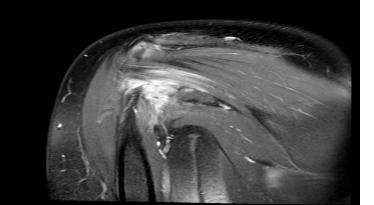


Clin Cancer Res 2009;15:5609-14


Crizotinib Development Timeline

Targeted Responses to Crizotinib

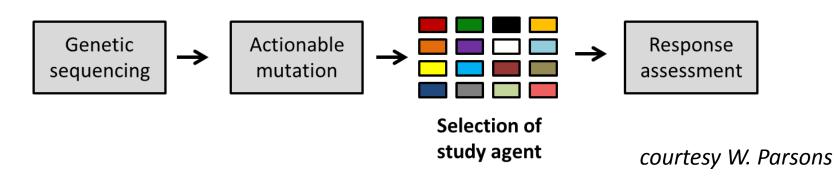

Patient with NB-germline mutation



Pre-Cycle 1

7

Post-Cycle 24


On-going Learning from ALK

- Mild side effects, long term administration tolerable; single agent MTD at 280 mg/m² (almost twice the adult dose) The Lancet Oncology, 2013May;14(6):472-80
- Response in ALCL met phase 2 endpoint for efficacy
 - Frontline trial incorporating crizotinib has opened (ANHL12P1, ClinicalTrials.gov Identifier: NCT01979536)
- Crizotinib may have a role in treatment of ALK+ IMT
- Phase 2 in patients with ALK+ NB continues
- Differential sensitivity to crizotinib dependent on variant ALK mutation: in vitro Cancer Cell. 2014 Nov 10;26(5):682-94.

<u>Objective</u>: to open a COG-wide single stage phase II trial of genomicallydirected therapies for children with refractory solid tumors and lymphomas

Antibodies: IMC-A12

	Dose Level (mg/kg)			Clearance (mL/h/kg)		
6	No. of patients		252 ± 95 7	0.25 ± 0.12 7	32.6 ± 21.1 7	4.2 ± 1.3 7
9	No. of patients	106 ± 57 17		0.22 ± 0.08 9	46.3 ± 20.8 9	4.4 ± 1.1 9

Adult target Cmin: 60 ug/ml at 6 mg/kg Cixutumumab: recommended phase 2 dose higher then adults

Greater variability in clearance

Higher dose to hit desired adult target

concentrations

J Clin Oncol 30:256-262., 2011

Lessons Learned and Opportunities for the Future in Pediatric Cancer Trials

- Beware of pre-clinical: models, exposure comparisons, surrogate markers of response
- Some agents may need very little dose finding in pediatrics e.g antibodies, agents with minimal toxicity
- Need early decision point to move a drug into up front therapy: randomized phase 2 studies
- Combinations
 - How to evaluate for up front therapy? What data is needed?
- Molecularly guided therapy: only 10-20% of patients at best

Conclusions

- To develop new agents to enhance the care of children and adolescents with cancer:
 - Requires coordination of pre-clinical, clinical and biologic resources
 - Needs understanding of the tumor/host/drug factors
 - Requires access to agents of interest with appropriate formulations for children
 - Requires collaboration
 - NCI/Academia/Industry
 - International

Acknowledgements

- COG: Peter Adamson
- Study Chairs:
 - Eric Shafer
 - Leo Mascarenhas
 - Suman Mulampati
 - Michael Isakoff
 - Carola Arndt
 - Yael Mosse
- PEC-MATCH: Will Parsons
- CTEP: Malcolm Smith
- PPTP: Malcolm Smith, Peter Houghton

Patients, Families, Dedicated Pediatric Oncology Community CHILDREN'S ONCOLOGY GROUP

